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Summary

This is the final report of the research grant FA8655-11-1-3084 issued by the Euro-

pean Office of Aerospace Research and Development. This research effort is devoted

to the analysis of the effect of damping mistuning on the forced response of tur-

bomachinery bladed disks using asymptotic techniques. In particular it includes:

(i) the derivation of the simplified Asymptotic Mistuning Model (AMM) for the

general problem of the forced response of a bladed disk with damping mistuning,

starting from the full general FE model description of the vibration of the rotor, (ii)

the analysis of the most frequent situations of forcing (iia) isolated, disk dominated

modes and (iib) clustered, blade dominated modes, and (iii) the checking of the

AMM predictions against the results form a 1 DOF per sector mass-spring system,

and the computation, for both forcing cases, of the damping mistuning pattern that

produces the maximum amplification of the vibration.
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Introduction

The term mistuning refers to the small differences among the (theoretically perfectly

identical) blades in real turbomachinery bladed disk. These small undesirable ran-

dom imperfections result from manufacturing, assembling and material tolerances,

as well as in-service wear, and are essentially unavoidable.

Mistuning strongly influences the dynamical response of the bladed disk and, in

particular, it typically leads to a considerable amplification of the vibration ampli-

tudes of individual blades, which can significantly exceed the corresponding forced

responses of the tuned (i.e., without imperfections) structure. These increased re-

sponse levels result in a higher risk of High Cycle Fatigue (HCF) failures, with the

corresponding strong negative impact on the safety, operability and readiness of

aircraft turboengines.

According to the 1998 study of the HCF Science and Technology program [?],

HCF was estimated to be responsible for the 56% of all Class A mishaps (a Class A

mishap is one that results in over $1.000.000 in damage, loss of aircraft, loss of a life

or permanent total disability), and 30% of all jet engine maintenance costs. It is,

therefore, of great interest to work towards understanding the action mechanisms of

mistuning, in order to try to devise ways to reduce or limit its amplification effect

on the vibration amplitude.

The mistuning effect on bladed disks vibration have been extensively studied

since the 70’s (see, e.g., the reviews by Slater et al. [1] and by Castanier and Pierre

[2], and the more recent presentation by Ewins [3]), and it still continues to be a

topic of active research (in the recent ASME Turbo Expo 2011 Conference there

were several mistuning related sessions). The well known main conclusions about

the consequences of mistuning can be briefly summarized as follows: (i) mistuning

can give rise to a large increase of the forced response vibration levels, and (ii)

mistuning has a stabilizing effect on the aeroelastic instabilities, that is, it tends to

reduce flutter induced vibrations.

The above mistuning results correspond to small variations of the elastic charac-

teristics (mass and stiffness) of the blades, which is the situation considered in the

vast majority of mistuning studies. In this research work, it is analyzed the not so

frequent case of damping mistuning, where the bladed disk exhibits a blade to blade

6
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variation of the damping.

Damping variation is always present in realistic situations, and it is typically due

to the scatter present in material damping values, and also to the large variability

of the damping produced at friction and interface joints. For example, in the case of

the turbine wheels produced for turbochargers for the automotive industry, a blade

damping variation of 30% or more is not unusual [4]. Also, for integrally bladed

rotors, damping variation can be related to the application of damping coatings. The

thickness of the film controls the resulting damping, and small errors in the coating

thickness produce large variations of the damping. In both cases the resulting blade

to blade damping variations are large, and the existing analysis [5, 6, 7] indicate that

the vibration amplification is comparable to that produced by elastic mistuning.

Lin and Mignolet [5] statistically analyzed the effect of damping mistuning on

the forced response of bladed disks using a simplified 1 DOF per sector model,

and they concluded that damping mistuning can lead to variations in the blade

vibration amplitude similar to that found with mass/stiffness mistuning. In the more

recent work of Siewert and Stüer [6] a Reduced Order Model (ROM) derived from

a complete bladed disk with damping mistuning is analyzed. The results from the

ROM are first successfully compared with those from a detailed FEM simulation of

the forced response of the mistuned rotor, and then the ROM is used to statistically

analyze the effect of damping mistuning. They confirm that the magnitude of the

resulting amplification factors is comparable to those from mass/stiffness mistuning,

but the required damping mistuning levels are much higher. Also, from the figures in

their paper, it can be clearly appreciated the interesting fact that damping mistuning

does not produce any noticeable frequency splitting. A more elaborated mistuned

ROM is developed in [7], which includes blade alone modes and takes into account the

motion of the disk-blade interface. This ROM is then applied to statistically explore

the mistuning patterns in order to obtain the maximum possible amplification for

different engine order excitations, and, as in the previous case, large amplifications

factors are found that require large damping mistuning levels, up to %80 of the

damping average.

The analyses available in the literature mostly perform statistical explorations on

reduced order models to get information about the vibration amplification levels due

to damping mistuning. The purpose of this research effort is to apply asymptotic

7
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techniques to derive a simplified Asymptotic Mistuning Model (AMM), which gives

quantitatively accurate results and, what is more important, allows to identify the

physical mechanisms that play a role in the effect of damping mistuning.

The AMM can be regarded as an extension of the Fundamental Mistuning Model

(FMM) [8, 9, 10] for the very frequent situations in which all modes of the family do

not share the same frequency (see CM and IM in Fig. 1). The derivation of the AMM

is performed using a fully consistent asymptotic expansion procedure on the complete

mistuned bladed disk model, and it does not require to select and assemble the blade

alone and disk modes as in the Component Mode Synthesis (CMS) procedure. The

AMM has been already used for the study of the optimal intentional (mass/stiffness)

mistuning patterns for the stabilization of aerodynamically unstable rotors [11], and

for the analysis of the forced response mistuning amplification [12], and its accuracy

has been successfully checked against high fidelity FEM simulations [13, 14].

#ND

Freq. FMM

AMM
ω0

r r

ω0

k
IM

CM

Figure 1: Sketch of tuned natural vibration frequencies vs. number of nodal diameters for a bladed-
disk. The FMM applies only to the forcing of a modal family with very similar frequencies. The
AMM can describe also the forcing of other modal configurations, like isolated modes (IM) and
clustered modes (CM).

This research work is organized as follows. In the first part (Methods, Assump-

tions, and Procedures), a detailed derivation of the Asymptotic Mistuning Model

(AMM) for the general problem of the forced vibrational response of a bladed disk

with damping mistuning is performed. The second part (Results and Discussion)

presents, in the first section, the application of the AMM to the description of the

8
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effect of damping mistuning on the forcing of two isolated modes (IM in Fig. 1).

In the second section, the AMM is applied to describe the forcing of a mode that

belongs to a cluster of modes with nearly equal tuned vibration frequency (CM in

Fig. 1). In both cases the mistuning pattern that gives maximum amplification of the

vibration amplitude is computed, and the AMM results are quantitatively checked

against those from a 1 DOF per sector mass-spring model. Finally, a summary of

the obtained results together with some concluding remarks are drawn in the last

part (Conclusions).

9
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Methods, Assumptions, and Procedures

Forced response of a bladed disk with damping mistuning

In this section, the problem of the forced response of a general bladed disk with

damping mistuning is considered, and it is expressed in the tuned TW basis to

simplify the derivation process of the AMM.

The starting point is the equations of motion of the full FEM discretization of

the forced bladed disk,

K · x + M · ẍ = f(t), (1)

where x and f are, respectively, the displacement of the independent DOF, and

the forcing vector. The tuned bladed disk is a cyclic structure, that is, it is made

of a sector that is repeated N times in the circumferential section to complete the

structure (see Fig. 2).

Figure 2: Left: detail of the sector of a sample turbomachinery rotor. Right: complete bladed disk.

It is assumed that the forcing takes the form of a traveling wave excitation with

frequency ω and engine order r,

f(t) = Feiωt + c.c.,

10
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where c.c. stands for the complex conjugate. The response, consequently, can be

written as a complex mode shape X with frequency ω,

x(t) = Xeiωt + c.c.,

which is given by the following linear, time independent system

[

K − ω
2·M

]

· X = F.

The mass M and stiffness K matrices are cyclic symmetric matrices

K =



















K Kc 0 · · · K
T
c

K
T
c K Kc 0

0
. . .

. . .
. . .

...
...

. . .
. . .

...

Kc 0 · · · K
T
c K



















, M =



















M Mc 0 · · · M
T
c

M
T
c M Mc 0

0
. . .

. . .
. . .

...
...

. . .
. . .

...

Mc 0 · · · M
T
c M



















, (2)

and the forcing term can be expressed as,

F =



















Fe
i(2πr/N)1

...

Fe
i(2πr/N)j

...

Fe
i(2πr/N)N



















,

once the vector X is arranged by sectors

X =



















X1

...

Xj

...

XN



















,

with the vector Xj containing the displacements of the m DOF associated with

sector j.

In order to take into account the sector to sector mistuning damping in our model,
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a damping matrix C is included

[

K + iC − ω
2·M

]

· X = F, (3)

which is a block diagonal matrix with blocks proportional to K

C =



















δ1 · K 0 · · · · · · 0

0 δ2 · K . . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 δN · K



















. (4)

Note that, as a first approximation, only linear in-sector damping is considered in

our model, and that the mistuning damping distribution is given by the damping

coefficients δj > 0, j = 1, . . . , N .

It is important to highlight that the variation of the damping δj from sector to

sector is of the order of the damping itself. This is a completely different situation

with respect to the case of mass/stiffness mistuning where the mistuning is just a

small variation around the tuned value.

In order to have a more clear understanding of the effect of the damping nonuni-

formity it is convenient to transform the system (3) into the basis of the traveling

wave natural modes of the tuned system:

(









Ω2
1 − ω

2
I · · · 0

...
. . .

...

0 · · · Ω2
N − ω

2
I









+ i∆)



















A1

...

Aj

...

AN



















=



















0
...

P
H
r · F

...

0



















, (5)

where the complex amplitudes of the tuned TW modes with k nodal diameters are

packed in the vector Ak, and the diagonal matrix Ωk contains their corresponding
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natural frequencies,

Ω2
k =









ω
2
k1 0

. . .

0 ω
2
km









, for k = 1 . . .N,

and m is the number of DOF per sector.

The resulting mistuning correction matrix in the traveling wave basis is then

given by:

∆ = PH ·C · P, (6)

and P is the transformation matrix from the basis of traveling waves to the basis of

physical displacements,

P =
1√
N



















P1e
i(2π1/N)1 · · · PNe

i(2πN/N)1

...
...

P1e
i(2π1/N)j · · · PNe

i(2πN/N)j

...
...

P1e
i(2π1/N)N · · · PNe

i(2πN/N)N



















, (7)

where

Pk = [Zk1|Zk2|...|Zkm], (8)

and the vectors Zk1, . . . , Zkm are the complex tuned mode shapes of the m TW

modes with k nodal diameters and associated frequencies ωk1, . . . , ωkm. Note that

the change from the physical displacements to the TW basis involves performing a

discrete Fourier transform of the sector to sector distribution of the system response.

The resulting discrete Fourier modes are precisely the TW amplitudes A1, . . . , AN ,

which are usually referred to as the nodal diameter spectrum. This spectral repre-

sentation of the displacements has been proved to be very useful for the analysis of

the effects of mistuning, see [15].

After inserting the above expression into Eq. (6), the mistuning correction matrix
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∆ takes the form

∆ =













∆11 ∆12 · · · ∆1N

∆21 ∆22 · · · ∆2N

...
...

. . .
...

∆N1 ∆N2 · · · ∆NN













(9)

where

∆kj =
N

∑

s=1

δs ·
(

P
H
k · K · Pj

)

· ei( 2π(j−k)
N )s (10)

The structure of the blocks ∆kj can be described more easily if the discrete Fourier

transform of sector damping distribution δj is used:

δj =
N

∑

k=1

δ
F
k e

i( 2πk
N )j

. (11)

Note that, since δj is a real distribution, its Fourier coefficients must verify

δ
F
k = δ

F
−k, (12)

and the sector averaged damping δm is given by

δm =
1

N

N
∑

j=1

δj = δ
F
N (13)

If we take the Fourier expression for the damping distribution (11) into Eq. (10),

the blocks of the mistuning matrix ∆ can be finally written as

∆kj = δ
F
k−j ·

(

P
H
k · K · Pj

)

. (14)

From the above equation it can be concluded that the effect of the mistuning is to

couple the natural TW modes; in the absence of damping mistuning the matrix ∆

is diagonal and, see Eq. (5), the TW are uncoupled. It is precisely the harmonic

k − j of the damping mistuning distribution the one responsible for the coupling of

the TW with k and j nodal diameters. This coupling effect means that, unlike what

happens in the tuned case, other TW modes different from the TW directly forced
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(i.e., the TW with number of nodal diameter equals to the engine order r) appear

in the forced response of the mistuned bladed disk.

Asymptotic derivation of the AMM

No simplifying approximations have been performed in the previous section. The

full FEM equations of motion for the forced response of the mistuned bladed disk,

Eq. (3) have just been written in the tuned TW basis, and the damping mistuning

contribution has been expressed in terms of the Fourier modes of the sector-to-sector

damping distribution, see Eqs. (5), (9) and (14).

In this section, an asymptotic procedure is applied to obtain the simplified AMM

from Eq. (5). Similar AMM derivations for the effect of elastic (mass/stiffness)

mistuning can be found in the references [11] and [12], for the cases of flutter and

forced response, respectively.

In order to see which TW modes are more relevant, we now make use of the fact

that the damping δj is small, which means that, in the unforced problem, it induces

a temporal decay of the response that takes place in a time scale much slower than

the oscillation period.

The AMM is derived retaining only the dominant terms in Eq. (5) and neglecting

the terms that produce a small correction. Note that, to have a maximum tuned

response amplitude normalized to 1, the forcing term in the right hand side of Eq. (5)

has to be of size δm and, therefore, it is also a small term.

The forcing has engine order r, and when the forcing frequency ω is close to

resonant tuned frequency ω0 (corresponding to a TW with r nodal diameters), two

types of TW modes can be distinguished:

1. Passive modes that, in first approximation, do not have any effect on the forced

response amplitude. These modes have frequencies ωkj that are not close to the

resonant frequency ω0, in other words, for the passive modes |ωkj − ω0| is large

as compared with the damping terms. Note that the subindex k = 1 . . .N and

j = 1 . . .m represent respectively the nodal diameter and corresponding mode

shapes. The equations for these modes in the system (5) are of the form:

(ω2
kj − ω

2)Akj =

N,m
∑

i,h=1

(small damping terms)Aih + (small forcing) (15)
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Since we are forcing near resonance, ω is close to ω0, and then |ωkj − ω| ∼
|ωkj − ω0| and the coefficient in left hand side of the equation is large as com-

pared to the damping and forcing terms. Consequently, the right hand side of

the above equation can be neglected, and gives, in first order approximation:

Akj ≃ 0 (16)

2. Active modes that take part in the forced response. These modes have frequen-

cies ωa close to the resonant frequency ω0. Their equation from the system (5)

can be written as:

(ω2
a − ω

2)Aa + i

∑

δaa′Aa′ = Fa (17)

with

δaa′ = δ
F
a−a′(ZH

a KZa′) (18)

where Za, Za′ , a and a
′ are, respectively, the indexes of the active modes Aa

and Aa′ , ωa is the frequency of the active mode, and the forcing Fa is equal to

zero for all the modes with nodal diameter different from the engine order r.

Once the passive modes have been removed from Eq. (5), the equations for the active

modes can be expressed as



















dk · · ·
dk+1 i · D
. . .

. . .
. . .

...
... i · DH . . . d−(k+1)

...

· · · d−k



































Ak

Ak+1

...

A−(k+1)

A−k

















=



















0
...

i · δm · fr

...

0



















. (19)

which is the AMM formulation for the active TWs: Ak, Ak+1, ..., A−k. The forcing

coefficient fr is set to

fr = (ZH
r KZr) (20)

in order to have tuned maximum response 1. The diagonal terms are given by

dk = (ω2
k − ω

2) + iδm(ZH
k KZk) (21)
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and the off-diagonal elements D are of the form

Dkk′ = δ
F
k−k′(ZH

k KZk′). (22)

The resulting AMM written in Eq. (19) reduces drastically the size of the problem

(5) to the number of active modes. The AMM retains only the minimal set of TW

that take part in the forced response of the mistuned system (the active TW modes).

The rest of the modes (the passive TW modes) have frequencies that are far away

from the frequency of the directly forced mode and, in first approximation, are not

excited by the forcing and can be neglected. The derivation of the AMM requires

to know only the tuned vibration characteristics of the system and the damping

distribution, and it gives precise information on which Fourier harmonics of the

damping distribution induce a coupling between the active TW modes.

Frequency shift due to damping mistuning

The absence of frequency shift in the forced response of a rotor with damping mis-

tuning can be proved analytically using the AMM formulation.

The mistuned natural vibration characteristics of the system can be obtained from

the same AMM system in Eq. (19) just by setting the forcing to zero and solving

the resulting eigenvalue problem for ω. Note that now ω is a complex number; its

real part is the mistuned natural vibration frequency and its imaginary part is the

damping.

If the AMM matrix is premultiplied by the row vector

[Ak, Ak+1, . . . , A−(k+1), A−k]

(the over-bar means complex conjugation), and the real part is taken, then the

following expression is obtained:

k
∑

j=−k

|Aj|2(ω2
j − ℜ(ω2)) = 0, (23)

where ℜ stands for the real part.

The natural vibration frequencies of all active TW modes ωj, and the eigenvalue

ω are both very close to the frequency of the cluster of modes ω0, and, therefore,
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they can be written as

ωj = ω0(1 + ∆ωj),

ω = ω0(1 + ∆ω),

with |∆ωj| ≪ 1 and |∆ω| ≪ 1. If these expansions are taken to Eq. (23), and the

higher corrections in ∆ωj and ∆ω are neglected, then it simplifies to

k
∑

j=−k

|Aj |2(∆ωj − ℜ(∆ω)) = 0. (24)

In the expression above |Aj|2 ≥ 0, and, since the sum has to be 0, ℜ(∆ω) cannot

be above or below all the ∆ωj , it has to be in between them, that is,

min
j=−k...k

(∆ωj) ≤ ℜ(∆ω) ≤ max
j=−k...k

(∆ωj).

The mistuned natural frequencies are in between the frequencies of the clustered

tuned active TW modes, which have all very similar values. In other words, it can

be concluded that, in contrast to what happens with the mass/stiffness mistuning,

there is no appreciable frequency splitting associated with the effect of damping

mistuning.
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Results and Discussion

The effect of damping mistuning on the forced response of the simple 1-DOF spring-

mass model shown in Fig. 3 is analyzed in this section. The spring mass system is

given by

ẍj + ω
2
axj + ω

2
c (2xj − xj+1 − xj−1) + cδj ẋj =

fei(ωt+2π(r/N)j) + c.c., j = 1 . . . N, (25)

where c.c. means complex conjugate, N = 50 sectors, ω
2
a = ω

2
c = 1, δj is the

mistuning distribution with average value one (δm = 1), c is the damping coefficient,

and f is scaled in order to have tuned response equal to 1.

The tuned vibration characteristics of the mass-spring system are also represented

in Fig. 3, where the two thick black vertical lines indicate the two forcing cases that

are going to be considered: (i) forcing with engine order r = 7 (isolated modes, IM),

and (ii) forcing with engine order r = 24 (clustered modes, CM).

Figure 3: Top: sketch of the simple 1-DOF per sector system. Bottom: tuned frequencies vs.
number of nodal diameters (IM: forcing engine order 7, CM: forcing engine order 24).

In order to check the accuracy of the AMM, the mass-spring system response for

the two forcing configurations is computed and compared with the AMM predictions.
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Forcing of isolated modes

This first case corresponds to forcing the tuned TW mode with 7 nodal diameters

and vibration frequency ω0 = 1.3135 . . ., which is well apart from the rest, i.e., its

distance to the frequencies of the remaining TW modes is large as compared with

the small damping, see Fig. 3. This is the simplest possible configuration, which

corresponds to the forcing of an isolated mode (labeled IM in Fig. 3). The only

active modes that are present in the mistuned response are the forced TW and its

symmetric one (also with 7 nodal diameters and the same frequency ω0, but rotating

in the opposite direction), and the corresponding AMM description includes only

these two active TW modes.

The AMM (see Eq. (19)) for this case consists of only two equations, and takes

the form:

[

(ω2
0 − ω

2) + iδmD0 iδ
F
2rD

iδ
F
2rD (ω2

0 − ω
2) + iδmD0

][

A+r

A−r

]

=

[

iδmD0

0

]

(26)

where:

D0 = Z
H
+rKZ+r and D = Z

H
+rKZ−r, (27)

and the response of the system consists of the superposition of the two TW modes

with amplitudes A±r

Xj = (Z+rA+re
i(2πr/N)j + Z−rA−re

-i(2πr/N)j),

for j = 1, . . . , N. (28)

Note that, from the above system, it can be concluded right away that only the

harmonic 2r = 14 of the damping mistuning distribution has a noticeable effect on

the vibratory response of the system.

If the rescaled frequency

∆ω =
ω

2
0 − ω

2

δmD0

, (29)

and rescaled damping mistuning
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deiφ =
δ

F
2r

δm

D

D0

, (30)

are used, then the AMM further simplifies to

[

∆ω + i ideiφ

ide−iφ ∆ω + i

] [

A+

A−

]

=

[

i

0

]

, (31)

which can be easily solved analytically to give

A+r = i[∆ω+i]

[∆ω+i]2+d2 ,

A−r = de−iφ

[∆ω+i]2+d2 .

The vibration amplitude of blade j = N can be written as

Amplitude ∝ |A+r + A−r|, (32)

and, using the solution of the AMM, the amplification factor due to damping mis-

tuning can be finally expressed in closed form as

AF =

∣

∣[1 − i∆ω] − de
−iφ

∣

∣

∣

∣[1 − i∆ω]2 − d
2
∣

∣

. (33)

Note that, for the tuned case d = 0, the maximum value of the above AF is 1.

In order to find the maximum amplification due to damping mistuning the ex-

pression for the AF (Eq. (33)) is explored as a function of the three parameters: ∆ω,

d, and φ. The resulting maximum values of the amplification factor AF (Eq. (33))

over the angle φ for any given values of ∆ω and d are plotted in the left plot Fig. 4.

In order to avoid the unphysical possibility of having a negative damping, the 2r

Fourier coefficient of the mistuning damping distribution δ
F
2r has to be limited to

(see the expressions (11) and (12))

|δ
F
2r

δm
| < 0.5.

On the other hand,
∣

∣

∣

∣

D

D0

∣

∣

∣

∣

≤ 1,
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as it can be readily obtained from Eq. (27) using the fact that Z+r = Z−r and K is

a real symmetric non-negative matrix, so the size of the scaled damping mistuning

is limited to

d = |δ
F
2r

δm
|| D

D0
| < 0.5.

and the resulting amplitude factor can be, therefore, as high as AF = 2 for this

simple case (see the left plot Fig. 4). For any given rescaled mistuning damping

amplitude d, the maximum AF is obtained for ∆ω = 0, that is, for the forcing

frequency equal to the frequency of the forced tuned TW. The maximum AF as a

function of d has the very simple expression

AFmax =
1

1 − d

. (34)

which is plotted in the right plot of Fig. 4. The maximum AF increases as d is

increased, that is, if the average damping δm is kept fixed, the AF increases as

the coefficient of the 2r Fourier mode of the damping mistuning distribution δr is

increased.
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Figure 4: Left: Maximum AF (Eq. (33)) as a function of the mistuning amplitude d ≤ 0.5 and
the frequency ∆ω. Right: Maximum amplification factor as a function of mistuning amplitude d
( ∆ω = 0).

In order to check the above results, several simulations of the mass-spring system

given by Eq. (25) have been performed for engine order forcing r = 7, moving the

forcing frequency close to that of the isolated mode frequency labeled IM in Fig. 3,
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ω0 = 1.3135 . . . , and with small damping coefficient c = 0.01/ω0.

The case in Fig. 5 corresponds to computing the forced response of the mass-

spring system with a damping mistuning pattern that has only the Fourier mode

2r = 14, with amplitude δ
F
14/δm = 0.25,

δj = δm(1 + 0.5 cos(2π
14

N

j)), j = 1 . . . N. (35)

The maximum displacement for each sector is computed during the forcing frequency

sweep, and the results are plotted with blue lines in the top left plot, where the

envelope is also indicated with a thick red line. The obtained maximum amplitude

AFmax = 1.332, is in very good agreement with the AMM prediction AFAMM =

1.333, which is given by Eq. (34) for the particular value of

d = |δ
F
2r

δm
|| D

D0
| = 0.25 × 1 = 0.25,

and is marked with a horizontal black line. The mistuning damping of the different

blades is represented in the left middle plot, and, in the bottom plot, the Fourier

coefficients of the mistuning damping distribution are shown (only the average mode

and the 2r = 14 mode are present in this case). The resulting amplitude of the

different TW modes as the forcing frequency is varied is represented in right plot of

Fig. 5. Note that, again in perfect agreement with the AMM predictions, the only

TW modes involved in the mistuned response are those with wavenumber 7 and −7.

The forced response of the mass-spring system is now computed for a damping

mistuning pattern that is made of the previous pattern with a random variation

superimposed.

δj = δm(1 + 0.50 cos(2π
14

N

j) + randomj), j = 1 . . . N. (36)

The random component is chosen to have no Fourier harmonic 14, so, for this second

damping mistuning pattern δ
F
14/δm = 0.25, as in the previous case. The correspond-

ing results are given in Fig. 6. The response of the system is practically the same as

in the previous case, with AFmax = 1.338, despite of the now more complex damping

mistuning pattern, which exhibits sectors with much smaller damping values. This,

as predicted by the AMM, is due to the fact that the only component of the damping
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mistuning pattern that affects the system response is δ
14
F , and this one has not been

changed.

The third damping mistuning pattern considered is obtained by removing the

Fourier harmonic 14 in the previous pattern

δj = δm(1 + randomj), j = 1 . . .N. (37)

The forced response of the mass-spring system is shown in Fig. 7, where it can be

clearly appreciated that the damping mistuning pattern with δ
14
F = 0 has practically

no noticeable effect on the system response. The system behaves as if it were tuned,

showing no noticeable amplification of the forced response, AFmax = 0.992, despite

of the fact that there is a strong sector to sector variation of the damping, with some

sectors showing very small values of the damping. This confirms again the AMM

prediction about δ
14
F being the sole cause of the amplification of the forced response.

Finally, to once again confirm the AMM predictions, a fourth mistuning distri-

bution is used that contains only the Fourier harmonic δ
F
19/δm = 0.25,

δj = δm(1 + 0.50 cos(2π
19

N

j)), j = 1 . . .N. (38)

The results in Fig. 8 indicate that, with δ
F
14 = 0, the system behaves again as if there

were no mistuning at all present, with an amplification factor of AFmax = 0.998.

In summary, the damping mistuning effect in the forcing of a TW with tuned

frequency well apart from its neighbors (i.e. with a frequency gap large as compared

with the damping) can produce an amplification of the forced response amplitude

only when the damping distribution contains precisely the Fourier harmonic with

wavenumber equal to twice the engine order of the forcing.
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Figure 5: Response of the mistuned mass-spring system in Fig. 3 to a forcing with engine order 7.
The damping mistuning pattern is composed of a mean value plus a Fourier mode 14 (see Eq. (35)).
Top left: maximum displacements |xj | vs. forcing frequency (AMM prediction for the maximum
value indicated). Middle left: damping mistuning distribution δj . Bottom left: amplitude of the
Fourier modes of the damping mistuning distribution. Right: amplitude of the TW components
of the response vs. forcing frequency (wavenumber in the vertical axis).

25

Distribution A:  Approved for public release; distribution is unlimited.



1.3 1.31 1.32

0.5

1

1.5
 ← AMM

ω

|x
j
|

10 20 30 40 50
0

0.5

1

1.5

2

k

δ
j

0 5 10 15 20 25
0

0.5

1

k

|δ
j
F|

1.305 1.31 1.315 1.32 1.325
−25

−20

−15

−10

−5

0

5

10

15

20

25

ω

k

Figure 6: Response of the mistuned mass-spring system in Fig. 3 to a forcing with engine order
7. The damping mistuning pattern is composed of a mean value plus a Fourier mode 14 and a
random distribution (see Eq. (36)). Top left: maximum displacements |xj | vs. forcing frequency
(AMM prediction for the maximum value indicated). Middle left: damping mistuning distribution
δj . Bottom left: amplitude of the Fourier modes of the damping mistuning distribution. Right:
amplitude of the TW components of the response vs. forcing frequency (wavenumber in the vertical
axis).
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Figure 7: Response of the mistuned mass-spring system in Fig. 3 to a forcing with engine order 7.
The damping mistuning pattern is composed of a mean value and a random distribution with zero
Fourier mode 2r = 14 (see Eq. (42)). Top left: maximum displacements |xj | vs. forcing frequency.
Middle left: damping mistuning distribution δj . Bottom left: amplitude of the Fourier modes of
the damping mistuning distribution. Right: amplitude of the TW components of the response vs.
forcing frequency (wavenumber in the vertical axis).
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Figure 8: Response of the mistuned mass-spring system in Fig. 3 to a forcing with engine order
7. The damping mistuning pattern is composed of a mean value plus a Fourier mode 19 (see
Eq. (42)). Top left: maximum displacements |xj | vs. forcing frequency. Middle left: damping
mistuning distribution δj . Bottom left: amplitude of the Fourier modes of the damping mistuning
distribution. Right: amplitude of the TW components of the response vs. forcing frequency
(wavenumber in the vertical axis).
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Forcing of clustered modes

The mass-spring system is forced with an engine order r = 24, near the resonant

tuned TW, which has frequency ω0 = 2.1830, and with a small damping coefficient

c = 0.03/ω0. The forced TW is on the horizontal part of the frequency distribution

of the modal family (see the encircled modes labeled CM in Fig. 1), and, therefore,

there are more active TW modes (those with frequency close to ω0) in this case: those

with nodal diameters 21, 22, 23, 24, 25, and the symmetric ones −24,−23,−22,−21.

The AMM description, according to Eq. (19), can now be written as 9× 9 linear

system

















d21

d22

. . .

iD

iD
H d−22

d−21

































A21

A22

...

A−22

A−21

















=



















0
...

iδmfr

...

0



















, (39)

for the amplitudes of the 9 active TW modes:

A21, A22, A23, A24, A25, A−24, A−23, A−22, A21.

The damping mistuning harmonics that appear in the off-diagonal terms of the

AMM matrix are

δ
F
1 , δ

F
2 , . . . , δ

F
8 ,

which are the only that effectively couple the 9 active TWs A21, . . . , A−21, and the

vibration amplitude of blade j = N can be written as

Amplitude ∝ |A21 + A22 + · · ·+ A−22 + A−21|, (40)

The AMM indicates that only the damping mistuning harmonics with wavenum-

ber from 1 to 8 actually have effect on the response of the system. In order to check

this prediction, the following mistuning pattern is used

δj = δm(1 + 0.2 cos(2π
1

N

j) + 0.2 cos(2π
3

N

j) + 0.5 cos(2π
8

N

j)), j = 1 . . . N, (41)

which contains only the Fourier harmonics 1, 3, and 8. The response of the mass-
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spring system gives a maximum amplification factor AFmax = 1.382, much larger

than the tuned one, see Fig. 9. On the other hand, the results shown in Fig. 10

correspond to a damping mistuning pattern with harmonics with wavenumber 13,

16 and 20

δj = δm(1 + 0.2 cos(2π
13

N

j) + 0.2 cos(2π
16

N

j) + 0.5 cos(2π
20

N

j)), j = 1 . . . N, (42)

all of them not active according to AMM, and, in this case, there is no detectable

effect of the mistuning and no amplification of the response of the system (AFmax =

1.004), even though there are in-sector damping values as small as 0.25.

The resulting AMM is again much simpler than the original problem, but it is

still too complicated to obtain an explicit expression for the maximum amplification

factor as it was done in the previous section. So, in this case, the damping mistuning

distribution that leads to the maximum amplification factor is located using an

optimization algorithm. The optimization is performed for both, the mass-spring

system and the AMM approximation, and the results are compared to quantitatively

check the validity of the AMM calculations.

The applied optimization process looks for the damping mistuning distribution

δ1, . . . , δN that maximizes the forced response of the system. The average damping

is fixed δm, and the sector damping values are allowed to vary in the range δj/δm ∈
[0.5, 1.5], j = 1, . . . , N . For each excitation frequency ω the optimization generates

a maximum response and the corresponding damping mistuning distribution, and

the frequency ω is varied in the vicinity of the resonant frequency ω0 to locate the

global maximum response.

The forced response of the system with the damping distribution that gives global

maximum amplitude is then computed performing a frequency sweep around the res-

onant frequency ω0. The results are presented in Fig. 11 and Fig. 12, for, respectively,

the mass-spring system model and the AMM approximation. The resulting max-

imum amplification factors are very similar: AFmax = 1.6514 for the mass-spring

system, and AFmax = 1.6321 for the AMM. And the damping mistuning pattern

that gives the maximum AF is practically identical for the two cases, except for a

shift of 8 sectors. It is interesting to notice that the most important Fourier mode

of the damping distribution is now δ
F
1 . This Fourier mode produces a coupling of

the directly forced TW (k = 24) with its adjacent TW modes, which now are also
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active modes. The result is that the TWs that have some appreciable magnitude

are only those active TW modes around the directly forced TW (k = 24), as it can

be clearly seen in the right plot of both Fig. 11 and Fig. 12.

As a last check of the AMM predictions, a simulation of the forcing of the mass-

spring system is performed for a mistuning distribution that is equal to the one

that gives maximum AF (see Fig. 11) but with the Fourier harmonics from 1 to 8

removed. These are precisely the Fourier harmonics of the mistuning distribution

that, according to the AMM, have an effect on the forced response of the system.

It is clearly seen in Fig. 13 that, without these Fourier harmonics in the damping

mistuning distribution, the system falls back to the tuned dynamics.

In summary, the AMM quantitatively predicts the forced response of the mistuned

mass-spring system. Even in the case of clustered modes, where several active TW

modes have to be kept in the AMM formulation, the size of the AMM is always

much smaller than that of the complete system, and, therefore, using the AMM the

computation of the mistuned forced response and its optimization is dramatically

faster and requires much less CPU cost.
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Figure 9: Response of the mistuned mass-spring system in Fig. 3 to a forcing with engine order
24. The damping mistuning pattern is composed of a mean value plus the Fourier modes 1, 3
and 8 (see Eq. (41)). Top left: maximum displacements |xj | vs. forcing frequency. Middle left:
damping mistuning distribution δj . Bottom left: amplitude of the Fourier modes of the damping
mistuning distribution. Right: amplitude of the TW components of the response vs. forcing
frequency (wavenumber in the vertical axis).
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Figure 10: Response of the mistuned mass-spring system in Fig. 3 to a forcing with engine order
24. The damping mistuning pattern is composed of a mean value plus the Fourier modes 13, 16
and 20 (see Eq. (42)). Top left: maximum displacements |xj | vs. forcing frequency. Middle left:
damping mistuning distribution δj . Bottom left: amplitude of the Fourier modes of the damping
mistuning distribution. Right: amplitude of the TW components of the response vs. forcing
frequency (wavenumber in the vertical axis).
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Figure 11: Response of the mistuned mass-spring system in Fig. 3 to a forcing with engine order
24. The mistuning pattern has been optimized to give maximum response amplitude. Top left:
maximum displacements |xj | vs. forcing frequency. Middle left: damping mistuning distribution
δj . Bottom left: amplitude of the Fourier modes of the damping mistuning distribution. Right:
amplitude of the TW components of the response vs. forcing frequency (wavenumber in the vertical
axis).
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Figure 12: Response of the mistuned mass-spring system in Fig. 3 to a forcing with engine order 24
computed using the AMM. The mistuning pattern has been optimized to give maximum response
amplitude. Top left: maximum displacements |xj | vs. forcing frequency. Middle left: damping
mistuning distribution δj . Bottom left: amplitude of the Fourier modes of the damping mistuning
distribution. Right: amplitude of the TW components of the response vs. forcing frequency
(wavenumber in the vertical axis).
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Figure 13: Response of the mistuned mass-spring system in Fig. 3 to a forcing with engine order
24. The mistuning pattern is the optimal one in Fig. 11 but with all Fourier modes from 1 to
8 removed. Top left: maximum displacements |xj | vs. forcing frequency. Middle left: damping
mistuning distribution δj . Bottom left: amplitude of the Fourier modes of the damping mistuning
distribution. Right: amplitude of the TW components of the response vs. forcing frequency
(wavenumber in the vertical axis).
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Conclusions

The AMM (Asymptotic Mistuning Model) has been used to analyze the effect of

damping mistuning on the forced response of a bladed disk. We analyze the case of

linear damping, with a mistuning sector to sector variation of the damping that is

of the order of the mean damping itself (i.e., it is not a small modulation over the

tuned value).

The AMM is systematically derived from the general equations for the forced

response of a mistuned bladed disk using an asymptotic expansion procedure that

is based solely on the smallness of the damping (as compared with the forcing fre-

quency), and it retains only the tuned TW modes of the complete rotor that have a

natural frequency close to that of the directly forced TW.

The AMM has been applied to compute the effect of damping mistuning in two

frequent situations: forced response of a pair of isolated modes, and forced response

of a group of modes with close frequencies.

The results from the AMM have been successfully compared with those from a

simple 1 DOF per sector mass-spring system. The AMM not only produces quantita-

tively accurate results using a extremely reduced model; it also gives information on

the mechanisms of action of the damping mistuning pattern on the forced response

of the system.

The application of the AMM allows us to draw the following final remarks about

the effect of damping mistuning:

1. Damping mistuning can increase the forced response of the system. The har-

monics of the damping mistuning distribution that couple active TW modes

can induce an increase of the forced response, but the rest of the harmonics

do not produce any appreciable effect on the system response. In other words,

the system has zero sensibility (in first approximation) to the harmonics of the

damping mistuning pattern that do not couple active TW modes

2. The presence of small in-sector values of the damping does not necessarily

implies an amplification of the forced response (see Fig. 7). This is because

the relevant damping values are certain Fourier coefficients of the damping

distribution, and not the particular damping value of a sector.
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3. From Fig. 4 it can be clearly appreciated that the amplification factor grows

monotonously with the amplitude of the damping mistuning. This rules out

the possibility of using intentional damping mistuning as a way to reduce the

amplification factor.

4. Lin and Mignolet concluded in [5] that damping mistuning can lead to a severe

increase in the forced response amplitude, which can be larger than that result-

ing from mass/stiffness mistuning. This is in agreement with our results: in the

case of isolated modes, the maximum amplification due to damping mistuning

is AFmax = 2 (see Fig. 4), while for mass/stiffness mistuning the maximum

amplification is always lower than AFmax = (1 +
√

2)/2 = 1.207 . . . [12]. If

there are more active TW involved in the mistuned response of the system the

maximum amplification factor can be even higher (see Fig. 11).

5. And finally, it is interesting to highlight that, as opposed to what happens

with the mass/stiffness mistuning, the damping mistuning amplification of the

forced response does not produce any appreciable frequency splitting (as it

can be seen in figures Fig. 5 to Fig. 12 of this report, and in [6]). This is an

important characteristic of damping mistuning that can be used to identify its

presence from experimental measurements.
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List of Symbols, Abbreviations, and Acronyms

δm Sector averaged damping

δj , δ
F
k Damping amplitude at sector j, k Fourier mode of the damping distribution

∆kj Damping mistuing block matrix

ω Frequency of the forcing

ω0 Tuned natural frequency of the excited TW

ωa Active mode tuned natural frequency

Aj Traveling wave mode amplitude

D, Dij Mistuning coefficients in the TW basis

F In-sector forcing vector

fr Forcing coefficient

K In-sector stiffness matrix

Kc Sector-to-sector coupling stiffness matrix

M In-sector mass matrix

m Number of DOF per sector

Mc Sector-to-sector coupling mass matrix

N Number of sectors

Xj In-sector displacement vector

Zkj Traveling wave in-sector mode shape

∆ Damping mistuning matrix in the TW basis

C Damping matrix

F External force

K Stiffness matrix

M Mass matrix

P Matrix of change from TW to displacements

X Independent DOF displacement vector

AF Amplification factor

AMM Asymptotic Mistuning Model

d Mistuning damping amplitude

r Engine order of the forcing

TW Traveling wave

41

Distribution A:  Approved for public release; distribution is unlimited.




